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Diversity of population models

Malthus’s (exponential) growth model Verhulst's (logistic) growth model
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FIG. 3. The generalized logistic curve and its derivative models [11]

Figure: Cioruta (2016)
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The Fisher Equation

Oty = py — ay® + DV?y

B [ sets growth rate
B a sets saturation population.

m DV?2y is diffusion in space.
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The (Mean Field) Fisher Equation

Ory = py — ay*> + D(7 — y)
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Fisher with Seascape Noise

Oey =y —ay> +D(y —y) +|oyn

m y7) is seascape noise

m Represents randomness in fitness and enviroment
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Universality transition
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Power laws near extinction

The variance scales anomalously at high noise:
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Fisher Averaged leads to Richard’'s Equation

The Richard's Equation

The Richard’s Equation is given by

Oty = py — ay“,

where typically 1 < a < 2.

Our Results

Near extinction, the mean of the Stochastic Fisher Eq. behaves as

0y = ply) —aly®) + D(y — y) + (oyn)
= py — a(y?)
= py—ay'™’,
where 8 = min (1,2D/c?).

BJOL



Agreement
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Figure: ¢, = 2u/0?, cp =2D/0?, ¢, = 2a/o”.
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