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In 1992, a puzzling transition was discovered in simulations of randomly coupled limit-cycle oscillators.
This so-called volcano transition has resisted analysis ever since. It was originally conjectured to mark the
emergence of an oscillator glass, but here we show it need not. We introduce and solve a simpler model with
a qualitatively identical volcano transition and find that its supercritical state is not glassy. We discuss
the implications for the original model and suggest experimental systems in which a volcano transition
and oscillator glass may appear.
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Large systems of attractively coupled limit-cycle oscil-
lators can show synchronization transitions analogous to
ferromagnetic phase transitions [1,2]. These transitions
have been observed in chemical systems [3] and are
predicted for arrays of lasers [4–6], biological oscillators
[1], Josephson junctions [7], and optomechanical systems
[8]. The analogy to ferromagnetism led Daido [9,10] to
conjecture that, if the purely attractive couplings were
replaced by a frustrated mix of attractive and repulsive
couplings, oscillator arrays could potentially behave like
spin glasses [9–12]. So far, however, only a few counter-
parts of the phenomena observed in spin glasses have
been seen in oscillator arrays [13]. Finding, characterizing,
and even defining a true “oscillator glass” remains
controversial [9,10,13–20].
The search for oscillator glass began with a natural

model: N ≫ 1 phase oscillators with random symmetric
Gaussian couplings as in the Sherrington-Kirkpatrick spin-
glass model [21]. Simulations revealed a change in the
model’s distribution of complex local fields as the variance
of the Gaussian couplings was increased. At a critical
variance, the distribution switched from being concave
down at the origin to concave up, thus forming a volcano-
like surface and defining the “volcano” transition [10].
Daido suggested this transition might also signal the onset
of an oscillator glass. Further evidence was provided by
the numerical observation of slow (algebraic rather than
exponential) relaxation from an initially synchronous state
to an incoherent state. To explain these results analytically,
later studies sought similar phenomena in more tractable
models [13,18–20,22], but so far the volcano transition and
the glassy state have remained elusive.
In this Letter, we present a model with a solvable volcano

transition. It uses a coupling matrix whose rank is con-
trolled by a parameter K. In the low-rank regime 2 ≤ K ≪
log2N the model’s dynamics are nonglassy above thresh-
old. Thus, the volcano transition is not indicative of an
oscillator glass; in the model studied here, it merely signals

a synchronization transition in the presence of frustration.
Unfortunately, our analysis does not extend to the high-
rank regime K ¼ OðNÞ of more direct relevance to Daido’s
results [10]. For now, that case remains out of reach.
Whether a true oscillator glass exists in this or some other
regime thus remains an open question.
Following Daido [10], our model consists of coupled

phase oscillators. Oscillator j couples with strength Jjk to
oscillator k via the sine of their phase difference. The
governing equations are

_θj ¼ ωj þ
XN
k¼1

Jjk sin ðθk − θjÞ; ð1Þ

for j ¼ 1;…; N. Here θj denotes the phase of oscillator j
and ωj is its natural frequency, selected at random from a
given probability distribution. Instead of the Gaussian
frequencies and couplings studied in Ref. [10], for the
sake of solvability, we consider Lorentzian-distributed
frequencies with density

gðωÞ ¼ 1

πð1þ ω2Þ

and define the couplings as follows. Given an even integer
K > 0 and a coupling scale factor J ≥ 0, let

Jjk ¼
J
N

XK
m¼1

ð−1ÞmuðjÞm uðkÞm : ð2Þ

Here, for each oscillator j, the interaction vector

ðuðjÞ1 ;…; uðjÞK Þ is a random binary vector of length K with
each entry independently being �1 with equal probability.
Notice that the diagonal of Jjk will always be zero (since
it is an alternating sum of 1 s), and Jjk ¼ Jkj. In other
respects, the entries of the matrix are independent random
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variables (see Supplemental Material [23]). Because of the
presence of both positive and negative coupling, this model
induces frustration in the oscillator population. In the limit
of large N, the parameter K equals the rank of the coupling
matrix Jjk. Furthermore, if we fix K ≡ N and let N get
large, the off-diagonal entries converge to normal random
variables with a standard deviation of J=

ffiffiffiffi
N

p
. So when

K ¼ N ≫ 1, our construction approximates Daido’s origi-
nal Gaussian couplings.
To show numerically that our model has a volcano

transition, we compute its complex local fields [10]

Pj ¼ rjeiϕj ≔
XN
k¼1

Jjkeiθk ;

for j ¼ 1;…; N. Equation (1) then becomes

_θj ¼ ωj þ rj sin ðϕj − θjÞ:

By keeping track of the Pj over time, we obtain a
distribution of their magnitudes rj for each realization of
ω and Jjk. Figure 1 averages these distributions over many
realizations. As J increases from 1.5 to 2.5, the distribution
changes from concave down at the origin to concave up and
volcanolike. At a critical Jc, the origin no longer attracts the
maximum density. This Jc defines the volcano transition.
Figure 2 illustrates how the individual oscillator phases

θj behave on either side of the transition. For J < Jc,
the system is incoherent [Fig. 2(a)]. The phases of the
oscillators are uniformly distributed and bear no relation to
the coupling strength Jjk or the phase ϕk of the complex
local field [Fig. 2(b)]. In contrast, for J > Jc, the oscillators
with small jωjj form phase-coherent clusters [Fig. 2(c)].
Figure 2(d) suggests that this partial synchronization is
induced by the local fields: if oscillator j couples positively

(attractively) to oscillator k, then oscillator j tends to align
with the kth local field, whereas if they are negatively
(repulsively) coupled, then oscillator j tends to antialign
with the local field. In some realizations, we have also
observed clustering at phase differences other than zero and
π, for moderate values of Jjk.
Turning now to the analytical results, we examine

Eqs. (1) and (2) in the continuum limit N → ∞ with K
held fixed. Using an Eulerian description, we replace our
discrete system of oscillators with a continuous fluid
moving around the unit circle. Its state is described by a
density fðθ;ω; u; tÞ of oscillators with phase θ, natural
frequency ω, and interaction vector u. In this framework,
the dynamics are given by a continuity equation
ft þ ðfνÞθ ¼ 0, where the subscripts denote partial differ-
entiation, ν represents the velocity field on the circle given
by the continuum limit of Eq. (1),

νðθ;ω; u; tÞ ¼ ωþ hJðu; u0Þ sinðθ0 − θÞi; ð3Þ

and h·i denotes integration using the time-dependent
measure fðθ0;ω0; u0; tÞdθ0gðω0Þdω0ρðu0Þdu0. The coupling
term Jðu; u0Þ in Eq. (3) plays the role of Jjk in Eq. (2). It is
given by

Jðu; u0Þ ≔ J
XK
m¼1

ð−1Þmumu0m:

FIG. 1. Radial distribution of local fields. Each curve represents
the averaged density over 500 simulations of Eq. (1), using
N ¼ 250, K ¼ 4, fourth-order Runge-Kutta integration with a
step size of 0.01, 1000 transient steps, 2000 recorded steps, and
uniformly random initial phases.

(a)

(c)

(b)

(d)

FIG. 2. Oscillator phase distributions below and above the
volcano transition. (a), (b) J ¼ 1; (c), (d) J ¼ 3. Each panel
shows results for simulations of N ¼ 2000 and K ¼ 6; other
parameters as in Fig. 1. (a) Below the volcano transition, the
system is incoherent. (b) Density of θj − ϕk, indicating an
oscillator’s phase relative to that of the local field angle, plotted
against the associated coupling strength Jjk, normalized and
averaged across all k. Darker shades represent higher density.
The uniform vertical stripes show that when J ¼ 1 the local
field has negligible influence on oscillator phases. (c) Above
the volcano transition, phase-locked clusters appear. (d) Dark
horizontal bands at θj − ϕk ¼ 0 and �π indicate tendency of
oscillators to align or antialign to local field phases, depending
on the sign of Jjk.
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As before, u and u0 are random interaction vectors of length
K, all of whose entries are �1 with probability 1=2 each.
Thus, the probability of any particular vector is 2−K . The
associated term in the measure is ρðu0Þ ¼ 2−K

P
vδðu0 − vÞ,

where the sum runs over all the equally likely v ∈ f�1gK.
Similarly, the continuum limit of the local field is

Pðu; tÞ ¼ hJðu; u0Þeiθ0 i:

Inserting P in Eq. (3) gives

νðθ;ω; u; tÞ ¼ ωþ 1

2i
½e−iθPðu; tÞ − c:c:�:

Having derived the continuum model, we reduce it with
the Ott-Antonsen ansatz [24–27], a technique that yields
the exact long-term dynamics of Kuramoto oscillator
models with sinusoidal coupling and Lorentzian frequen-
cies. Following the standard procedure, we seek solutions
of the form

fðθ;ω; u; tÞ ¼ 1

2π

�
1þ

X∞
n¼1

αðω; u; tÞneinθ þ c:c:

�
;

and define aðu; tÞ ≔ αð−i; u; tÞ. We find [23]

_aðu; tÞ ¼ −aðu; tÞ þ P�ðu; tÞ − aðu; tÞ2Pðu; tÞ
2

; ð4Þ

where

Pðu; tÞ ¼
Z

Jðu; u0Þa�ðu0; tÞρðu0Þdu0

¼ J
2K

X
u0

XK
m¼1

ð−1Þmumu0ma�ðu0; tÞ

Finally, by replacing P in Eq. (4) with this sum, we get a
closed set of 2K ordinary differential equations for the
aðu; tÞ, one for each possible choice of u.
Equation (4) has rich dynamics, but for our purposes, it

suffices to analyze the stability of its trivial fixed point,
aðu; tÞ ¼ 0 for all u and t, because this state corresponds to
the incoherent state of Eq. (1). The volcano transition
occurs precisely when this state goes unstable. Thus, to
calculate Jc, we linearize Eq. (4) about a≡ 0 and deter-
mine when one of its eigenvalues is zero. The Jacobian is

−I þ J
2Kþ1

A: ð5Þ

Here I is the 2K × 2K identity matrix and

Auv ¼
XK
m¼1

ð−1Þmumvm;

where the entries of A have been conveniently indexed by
binary strings u; v ∈ f�1gK . The eigenvalues of A can be
found explicitly (see Supplemental Material [23]). To do
so, we write down the eigenvectors (which we guessed by
generalizing from small examples) and then read off the
eigenvalues. For each integer 1 ≤ n ≤ K and each binary
string v ∈ f�1gK , define a vector ζðnÞ ∈ R2K whose vth

entry is ζðnÞv ¼ vn. One can check that the set of all K such
vectors is orthogonal and, by using the evenness of K, that
AζðnÞ ¼ ð−1Þn2KζðnÞ. Moreover, given any η perpendicular
to all the ζðnÞ, one finds Aη ¼ 0. Therefore, A has exactly
three distinct eigenvalues: þ2K with multiplicity K=2, −2K
with multiplicity K=2, and zero with multiplicity 2K − K.
Consequently, the Jacobian (5) has three distinct eigenval-
ues, with the largest always being −1þ J=2. The con-
clusion is that the incoherent state for the continuum model
loses stability at

Jc ¼ 2: ð6Þ

This result holds for any even value of K.
The next question is whether Jc ¼ 2 gives a good

approximation to Jc when N is finite. To anticipate the
answer, recall that the continuum model reduces to the
2K-dimensional system (4). For the finite-N system (1) to
have any chance of behaving like a continuous fluid of
oscillators, we need it to have many oscillators per u and
hence to have N ≫ 2K .
To test these ideas, we simulate the finite-N system and

estimate Jc carefully. To pinpoint the volcano transition, we
first compute the one-dimensional (1D) distribution of local
field magnitudes rj ≥ 0 and fit it to the sum of two normal
distributions, with one centered at μ and the other at −μ,
and both with variance σ2. In other words, we approximate
the 1D density of local field magnitudes by

hðrÞ ¼ 2ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−μ2 − r2

2σ2

�
cosh

�
μr
σ2

�
;

for r ≥ 0. To obtain the full 2D distribution of the Pj’s, we
impose azimuthal symmetry by rotating and rescaling the
1D density above.
The functional form of hðrÞ allows us to identify its

convexity at the origin. It is concave down when γ ≔
μ2=σ2 < 1 and concave up when γ > 1. To measure γ
numerically, we use the method of moments on the 2D
distribution and find [23] that the product of the first and
negative first moments is

Mþ1M−1 ¼
π

2

1þ γ

½e−γ=2 þ ffiffiffiffiffiffiffiffiffiffi
πγ=2

p
Erfð ffiffiffiffiffiffiffi

γ=2
p Þ�2 :

The left-hand side can be numerically estimated by
aggregating moments from multiple simulations, along
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with an appropriate estimate of an error on its total. The
right-hand side can be proven to imply that hðrÞ is concave
down at the origin (and therefore J < Jc) if and only if
Mþ1M−1 ≳ 1.4694. Thus, by measuring these two
moments, we can use a bisection algorithm to zero in on Jc.
Figure 3 shows that, whenK is small, Jc ¼ 2 becomes an

increasingly good estimate asN gets large. For comparison,
we also computed Jc for a Gaussian coupling model in
which Jjk is a random symmetric matrix with normally
distributed entries having mean zero and variance J2=N. As
noted earlier, our coupling matrix (2) converges to such a
Gaussian matrix when K ¼ N ≫ 1, but our analytical
approach does not extend to this large-K regime. So
although the value of Jc for Gaussian coupling decreases
as N gets large, we cannot predict whether Jc asymptoti-
cally approaches two or not.
A proposed signature feature of oscillator glasses

[10,13,13–16] is nonexponential relaxation of the order
parameter

ZðtÞ ≔
XN
k¼1

eiθkðtÞ:

Figure 4 plots the decay of the order parameter for our
model. In the low-rank regime K ≪ log2N to which our
continuum theory applies, Fig. 4(a) shows that Z decays
exponentially fast. This is to be expected, given that the
dynamics reduce to a low-dimensional set of ordinary
differential equations (4) in this regime. So the dynamics
are not glassy here, even above the volcano transition.

However, outside the low-rank regime, there is some
indication that the model can exhibit a glassy state.
Figure 4(b) shows that, when K ¼ N ≫ 1, the order
parameter ZðtÞ decays roughly algebraically for sufficiently
large J. This finding aligns with results from Daido’s
Gaussian coupling model, which has been claimed
(controversially) to have algebraic decay [10,14–16].
Understanding the nature of this decay, in both our model
and Daido’s, remains an open problem. Other aspects of the
relationship between the two models need further inves-
tigation. Our model has tunable rank, while Daido’s model
always has full rank. At low rank, the volcano transition in
our model produces conspicuous phase clusters, which
never occur in Daido’s high-rank model. In the high-K
regime of our model, a glassy state seems to occur [23],
much like that seen in Daido’s model. So, presumably, our
model has a second transition. Its existence, nature, and
connection to Daido’s transition remain unclear.
An important future direction is the search for oscillator

glasses in the lab and in nature. One promising exper-
imental setup is an array of photosensitive chemical
oscillators coupled through a programmable spatial light
modulator, as used to create spiral wave chimeras [28]. But
we speculate that oscillator glasses may already exist in
nature. Given that they would not show any obvious
macroscopic signatures, such as collective rhythmicity,
they may have escaped notice. There may even be a
functional benefit to enforcing incoherence in certain

(a)

(b)

FIG. 4. Log-log plot for the decay of the order parameter ZðtÞ.
Each curve is the average of 750 numerical integrations of Eq. (1)
for N ¼ 5000 oscillators starting from the in-phase state (θj ¼ 0
for all j) and run for 1000 steps with a step size of 0.01. Solid
curves show coupled systems with J ¼ 10; dashed curves show
uncoupled systems with J ¼ 0 for which the order parameter
decays exponentially: ZðtÞ ¼ e−t. (a) Low-rank regime:
K ≪ log2ðNÞ. For K ¼ 2, ZðtÞ decays exponentially down to
the noise floor. Exponential decay is expected in this regime
because the dynamics of Eq. (1) are well approximated by the
low-dimensional system (4). (b) High-rank regime: K ¼ N ¼
5000. When K ¼ OðNÞ and J > Jc, the relaxation of Z slows
markedly, resembling the algebraic decay in glass.

FIG. 3. Critical value Jc versus N and K. Each value of Jc was
estimated by using a bisection method on the value ofMþ1M−1 to
achieve an accuracy of ≲0.02. For each J, we sample Jjk at least
100 times, simulate Eq. (1), evaluate Mþ1M−1, and keep track of
the running standard deviation of these products. If the current
value of Mþ1M−1 is more than 1.5 standard deviations from
1.4694, the bisection continues; otherwise, further simulations
are run, up to a maximum of 105 simulations. Each simulation
consists of 1000 transient steps followed by 2000 recorded steps
of a fourth-order Runge-Kutta integration, with a step size of
0.01, with initial phases all set to zero.
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situations. For instance, although snakes shed their skin in a
synchronized molt, humans do not. Perhaps, in cases like
this, evolution has selected for glassy states to prevent
pathological synchrony.
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