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Symmetry breaking in optimal timing of traffic signals on an idealized two-way street2
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Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular
traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively
explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as
vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally
unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until
now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for
the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that
optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to
this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions
vary and automotive density increases.
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I. INTRODUCTION20

The physics of traffic flow has been studied for more21

than half a century [1–7]. On freeways, traffic has been22

successfully modeled as a nonlinear fluid, making analytical23

solution possible [2]. On urban grids, however, the nonlinear24

effects of timed traffic signals make most models analytically25

intractable [8–12].26

The inefficient timing of traffic signals is responsible for up27

to 10% of traffic delays [13]. These delays cause commuters to28

waste dozens of hours in traffic each year, leading to billions29

of dollars in wasted fuel and a large environmental cost [14].30

Coordination between traffic signals has proven to be a cost-31

effective way to reduce these delays dramatically [13].32

Signal timing schemes fall into two categories: real time33

and pretimed [3,15]. Real-time schemes make adaptive use of34

information about traffic density and localized conditions to35

trigger light cycle changes [16]. Unfortunately, this informa-36

tion is not readily available at most intersections, and installing37

the necessary detectors can be prohibitively expensive [17].38

Pretimed schemes employ detailed computer simulation39

and heuristic optimization tools such as genetic algorithms40

[18–20] to search for optimal timings [17,21]. Once a scheme41

is generated, it can be relatively inexpensive to implement, but42

generating such a scheme requires computational resources43

that are often beyond the capacity of local government. Where44

traffic demands fluctuate, these schemes can quickly become45

outdated, so there is no guarantee that they will be optimal by46

the time they are implemented [16].47

II. MOTIVATION48

Many theoretical questions about optimal traffic signal49

timing remain unanswered. For a single one-way street, the50

best solution is a so-called green wave [4,22], in which51
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vehicles leaving a light at the instant it turns green arrive at all 52

subsequent lights at the instant they turn green [8]. In theory, 53

this means that vehicles traveling at the speed limit will never 54

stop at a red light, although in practice this fails when traffic 55

density exceeds a “jamming threshold” [12]. 56

It is impossible to achieve a bidirectional green wave on 57

an arbitrary two-way street due to the inherent frustration 58

of competing demands in each direction [23]. Past theo- 59

retical work has focused on maximizing the “bandwidth” 60

[4,5,16,21,24]—the interval of time in which vehicles can 61

progress through all traffic signals without stopping—of a 62

finite segment of road. There are several drawbacks to this 63

approach. First of all, bandwidth is not a direct measure of 64

efficiency, so the solution that maximizes bandwidth may 65

not minimize total trip time, stops, or delay [8]. Second, for 66

long roads, nonzero bandwidth is often unachievable in one 67

direction, making this approach incapable of improving upon 68

one-way schemes without arbitrarily dividing the road into 69

subsections. 70

III. OUR MODEL 71

We consider a highly simplified model of an infinite two- 72

way street with traffic lights along the entire length [25]. We fix 73

the spacing between consecutive lights �x and set xn = n�x, 74

where xn denotes the position of light n. 75

We let φn(t) denote the phase of light n at time t , taking 76

light n to be green when 77

2Nπ � φn(t) < (2N + 1)π

and red when 78

(2N + 1)π � φn(t) < (2N + 2)π,

where N is any integer. Note that we ignore the yellow portion 79

of the cycle and assume that the green time is half of the light 80

cycle. 81

Since the geometry of the system is invariant under transla- 82

tions of integer multiples of the block length (x �→ x + N�x), 83
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FIG. 1. (Color online) Space-time diagram for traffic flow. The
red (dark gray) bars indicate locations and times for red lights
and the green (light gray) bars indicate green lights. (a) illustrates
the definitions of various variables and parameters in our model.
(b) displays various vehicle trajectories. The dashed line (blue)
indicates a car traveling slower than the green-wave speed vg , the
dash-dotted line (magenta) indicates a car traveling faster than vg , and
solid lines (black) indicate cars traveling exactly at vg both eastbound
(starting on the left) and westbound (starting on the right). (c) displays
vehicle trajectories near the green- and red-wave speeds. The solid
line (black) indicates a car traveling at the green-wave speed. The
dashed line (red) indicates a vehicle traveling slightly faster than
the red-wave speed. The dash-dotted line (red) indicates a vehicle
traveling slightly more slowly than the red-wave speed.

we will look for optimal timing schemes that are also invariant84

under such translations. We therefore set85

φn(t) = 2π

TL

(t − n�t) , (1)

where TL is the period of the light cycle and �t is the time offset86

between consecutive lights (see Fig. 1) with 0 � �t < TL. We87

set φ0(0) = 0 without loss of generality.88

Consider a single vehicle starting at x = 0 and traveling89

eastbound on this street with constant velocity v = �x/TC ,90

where TC is the time for a car to travel one block. When91

the vehicle arrives at a red light, it stops until the light turns92

green, and then repeats the process (for simplicity we ignore93

acceleration and assume drivers react instantaneously). From94

the perspective of the vehicle, at the moment this light turns 95

green, the relative light phases are identical to the initial state. 96

Thus, the speed will be periodic. 97

The car’s effective speed veff—its average speed as t → 98

∞—is determined by the fraction of time spent waiting at red 99

lights, suggesting that an appropriate metric for efficiency is 100

E = veff/v. 101

We refer to a single cycle in which a vehicle passes through 102

NL lights before stopping and waiting for a time W as a “trip.” 103

During a single trip, a vehicle travels a distance of �xNL 104

in a total time TCNL + W . The vehicle arrives at light n at 105

time nTC , and thus NL will be the smallest positive integer 106

satisfying 107

(N − 1/2)TL + NL�t � NLTC < NTL + NL�t (2)

for some integer N . 108

Without loss of generality, we can eliminate one of the three 109

free parameters (TL, TC , and �t) above by defining the ratios 110

rC = TC

TL
and r� = �t

TL
, so Eq. (2) becomes 111

(N − 1/2) � NL (rC − r�) < N. (3)

It is straightforward to show that NL = ⌈
1

2{rC−r�}
⌉

and N = 112

�NL(rC − r�)� satisfy Eq. (3) [26], where �x� and �x� denote 113

the standard ceiling and floor functions and {x} = x − �x� 114

denotes the fractional part of x modulo 1. 115

The waiting time W may also be computed: the car stops at 116

time NLTC and begins to move again at time NTL + NL�t = 117

�NL(rC − r�)�TL + NL�t , so 118

W = �NL(rC − r�)�TL + NL�t − NLTC. (4)

Thus the efficiency for eastbound traffic can be expressed as 119

Eeast(r�,rC) = rCNL

�NL (rC − r�)� + r�NL

=
rC

⌈
1

2{rC−r�}
⌉

⌈⌈
1

2{rC−r�}
⌉

(rC − r�)
⌉ + r�

⌈
1

2{rC−r�}
⌉ . (5)

The efficiency depends on only two parameters, rC > 0 and 120

0 � r� < 1. It is bounded between 0 and 1, and decreases 121

monotonically with r� except at discontinuities. It reaches 122

a global maximum of 1 at r� = rC , which represents a green 123

wave, and immediately after a discontinuity at r� = rC + 1/2, 124

which we refer to as a red wave. A red wave occurs when 125

vehicles arrive at the instant each light turns red. In this worst- 126

case scenario (r� = rC + 1/2), vehicles travel for TC seconds 127

and then wait at a red light for the full red time TL/2. This 128

represents the global minimum. A vehicle traveling slightly 129

faster than the red wave (rC < r� − 1/2), on the other hand, 130

will arrive at the instant before each light changes. As a result, 131

all wait times are infinitesimal, and the efficiency is close to 1. 132

Sample trajectories for vehicles near the green- and red-wave 133

speeds are displayed in Fig. 1. Cross sections of Eeast for fixed 134

rC are shown in green in Fig. 2 [26]. 135

For westbound traffic, the time delay between consecutive 136

signals is not �t but rather TL − �t , and thus the efficiency for 137

westbound traffic is simply Ewest(r�,rC) = Eeast(1 − r�,rC), 138

the reflection of the function about r� = 0.5. 139
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FIG. 2. (Color online) Theoretical efficiency versus r� for (a)
rC = 0.34, (b) rC = 0.26, (c) rC = 0.25, and (d) rC = 0.13. Green
(light gray) indicates Eeast; red (dark gray) indicates Ewest; and black
indicates Etot assuming equal demand in both directions.

On a two-way street, we wish to maximize the weighted140

average efficiency141

Etot = weEeast + wwEwest, (6)

with weights we and ww dependent on the traffic volumes in142

each direction. For simplicity we will consider the case of143

symmetric demand, we = ww = 1/2.144

Given TC as dictated by safety considerations and holding145

TL constant, rC is fixed, and we attempt to choose r�146

(equivalent to choosing the offset �t) to maximize efficiency.147

This simultaneously maximizes the effective velocity veff and148

minimizes the total wait time.149

With equal demand in both directions, it might seem150

that the symmetry of the problem suggests a symmetrical151

optimum, i.e., r� = 0 or r� = 1/2 [22,23]. These are indeed152

local extrema, but usually not maxima. Another reasonable153

hypothesis is that the bidirectional optimum will coincide with154

the optimum in one direction, a green wave [9,22,23]. This is155

a local maximum but not necessarily the global maximum.156

Surprisingly, the global optimum instead often occurs when157

both directions are suboptimal but one direction is favored158

over the other. This is possible because small perturbations159

in r� can cause dramatic shifts from local efficiency minima160

to local maxima near discontinuities in Eeast or Ewest (note161

that the green-wave peak is not discontinuous). When, e.g., a162

discontinuous peak in Ewest occurs near the green-wave peak163

for Eeast, the loss of efficiency by perturbation off the eastbound164

green wave is offset by gains in the westbound efficiency. As a165

0 0.5 1 1.5 2
rC

FIG. 3. (Color online) Optimality of the green wave. Intervals of
rC for which the green wave optimizes the bidirectional efficiency are
indicated by green (light gray) rectangles. Intervals of rC for which
other timings are optimal are indicated by red (dark gray) rectangles.

result, green-wave timings fail to be optimal for various ranges 166

of rC (see Fig. 3). 167

IV. SOME LIMITATIONS 168

While the efficiency metric in Eq. (6) provides some insight 169

into the ideal signal timing for a two-way street, it has a number 170

of limitations. First of all, it applies only to a single vehicle. 171

In practice, vehicles often travel in groups known as platoons 172

[24,27]. The jagged efficiency peaks described by Eq. (5) and 173

displayed in Fig. 2 may not be achievable by an entire platoon 174

of vehicles. The theory also assumes identical non-interacting 175

cars with constant speeds and perfectly uniform light spacing. 176

In practice, city blocks vary in length even in well-planned 177

urban grids and driver behavior varies. Additionally, the 178

interactions between vehicles can play a significant role in 179

exacerbating congestion [28]. 180

To test the predictions of our model and verify that they are 181

relevant when these assumptions are relaxed, we simulated 182

the flow of vehicles on a street with 50 periodically placed 183

traffic lights. We imposed periodic boundary conditions to 184

avoid arbitrarily specifying entrance and exit rates. Instead, 185

cars were randomly placed along the street according to a 186

specified density ρ representing the fraction of the system 187

occupied by vehicles of a finite length (1/25 of the block 188

length for the results displayed in Figs. 4 and 5), and the total 189

number of vehicles in the system was conserved. The trips of 190

these vehicles were simulated during 30 light cycles. In the 191

simulation, vehicles were prevented from passing each other. 192

This caused queues to form at red lights as one might expect. 193

Simulations were repeated with unevenly spaced lights and 194

variable vehicle speed; results can be found in Fig. 4. 195

V. SIMULATION RESULTS 196

When the density is less than one vehicle per block, 197

the simulations are indistinguishable from theory. At low to 198

moderate vehicle densities, the computed efficiency remains 199

well approximated by the theory and non-green-wave optima 200

persist [see Fig. 4(a)]. At moderate densities, the efficiency 201

near discontinuous peaks degrades noticeably while the green 202

wave remains highly efficient. Thus a perfect green wave in 203

either direction is optimal for moderate densities. At very high 204

densities, gridlock, the scenario where vehicles at green lights 205

are unable to advance due to the queue ahead of them, becomes 206

a significant issue and the efficiency of all timings degrades. 207

In our model, the only way to avoid gridlock is to set r� = 0 208

and have all lights change in unison. 209

The middle and bottom panels of Fig. 4 show the efficiency 210

when vehicle speed varies [Fig. 4(b)] and when the light 211

spacing varies [Fig. 4(c)]. Variation in the light spacing with 212

proportionate variation in the offsets can actually improve 213
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FIG. 4. (Color online) Efficiency from simulation versus r� for
rC = 0.34. (a) shows the efficiency for increasing vehicle density:
the solid curve (black) indicates the theoretical efficiency (Etot); the
dotted (green), dash-dotted (blue), and dashed (red) curves represent
simulation results for vehicle densities of 10%, 50%, and 90% density,
respectively. The bottom panels display the effects of variation in
the traffic signal spacing (b) and vehicle speed (c) on the efficiency
with 10% traffic density. Solid (black) indicates the theoretical
efficiency; the dotted (green), dash-dotted (blue), and dashed (red)
curves represent simulation results for 0%, 1%, and 5% standard
deviation, respectively.

efficiency for some ranges of r�. This is reasonable given214

that lights that are close together behave like a single light and215

lights that are far apart have smaller wait times relative to the216

travel times. Variation in the vehicle speed has a smoothing217

effect on the discontinuities in the efficiency curve. Both of218

these factors degrade the efficiency in a smooth way, allowing219

the discontinuous optima to persist when the variation is small.220

Thus the theoretical predictions are “structurally stable.” This221

feature of the model suggests that the predictions may indeed222

have value even in real-world systems with nonideal behavior.223

VI. DENSITY EFFECTS224

To explore the effects of vehicle density in greater detail,225

we computed the efficiency for fixed (r�,rC) and increasing226

ρ. Below a critical density, which we refer to as the “jamming227

threshold” [29], the predictions of Eq. (6) give a good228

approximation for the efficiency. Above this threshold, the229

efficiency degrades, and the theory no longer approximates230

the observed behavior. For a range of physically relevant231

parameters the critical density is above 50% of the capacity of232

the road. Near some discontinuous peaks, however, the critical233

density is small and few vehicles are able to perform at the level234

indicated by the theory. This is due to the narrow bandwidth235
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FIG. 5. (Color online) Predictions and simulations of various
jamming transitions. (a) displays the eastbound efficiency for various
values of r� with rC = 0.34. Of particular interest are the green curve
(dashed), which represents an eastbound green wave, and the red
curve (solid), which is near an eastbound red wave. The markers
correspond to the critical densities for platoon segmentation (circle)
and platoon coalescence (square). (b) and (c) show the bidirectional
(weighted average of east- and westbound) efficiency for rC = 0.34
and rC = 0.26, respectively, with curves representing green-wave
peaks (green dashed curve), discontinuous peaks (red solid curve),
and suboptimal timings (blue dash-dotted curve).

corresponding to these timings [26]. Nonetheless, timings near 236

discontinuous peaks in the bidirectional efficiency can remain 237

optimal for a range of densities beyond the threshold. 238

The degradation of the quality of the theoretical predictions 239

is due to the assumption that vehicles are noninteracting. 240

Above the jamming threshold, the interactions between ve- 241

hicles cause delays that the theory ignores. In simulations, 242

vehicles initially clump together forming platoons. These 243

platoons can interact either by coalescing to form even larger 244

platoons or by being segmented at red lights. We can estimate 245

the critical density corresponding to the jamming threshold 246

analytically by deriving the conditions under which this 247

coalescence and segmentation occur at steady state [26]. These 248

predictions are displayed along with the numerical results 249

in Fig. 5. 250

VII. CONCLUSIONS 251

In the mid-20th century physicists and engineers began tak- 252

ing an analytical approach to traffic management. Theoretical 253

work has since proceeded along several lines, but we believe 254
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that there is still insight to be gained from simple solvable255

models.256

Here we have presented an analysis of traffic flow on an257

urban arterial road with periodic traffic signals. Our approach258

allows analytical prediction of optimal signal timing that259

agrees well with numerical simulations and approximates the260

behavior of the system even when idealizing assumptions are261

relaxed. It yields an efficiency metric that can be expressed262

and computed analytically, yet it reproduces features observed263

in more complex models—features such as platoon formation264

[25], discontinuous efficiency curves [23,28], irregular flow265

patterns [9], and phase transitions due to jamming [1,28,29].266

This work provides a theoretical framework for understand-267

ing the effects of signal timing on the efficiency of traffic268

flow. The insight gained from our simple model could help269

motivate the design of more efficient coordinated traffic signal270

timing programs on long arterials, particularly during periods271

of low to moderate traffic demand. Our analysis suggests 272

that timing schemes other than the traditional green-wave 273

approach may be optimal under certain circumstances, and 274

merit further exploration with realistic simulations of complex 275

driver behavior. Our methods could also be used to generate 276

“smart” initial guesses for numerical optimization schemes 277

with more complex efficiency metrics, or, alternatively, our 278

efficiency metric (6) could be modified to apply to arbitrary 279

networks of one- and two-way streets, perhaps allowing 280

exact rather than approximate optimization and yielding more 281

intuitive understanding of results. 282
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