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Introduction

Nearly everyone is unhappy with the rage-induc-
ing congestion that plagues their city roads.
Improving the traffic situation on a city-wide scale
is a difficult task, due to public policy factors and
many conflicting interests. Here, we address only
one aspect of the problem: optimizing the timing of
traffic lights. The challenge appears simple, but it
turns out to be a rich problem that presents an
opportunity for substantial theoretical analysis.
We start by modeling a two-way street.
Assume that all cars exist on a ring with evenly-
spaced traffic lights, and an equal number of cars
are present on both sides of the street. The cars
are granted instantaneous acceleration from zero
to velocity V, which is constant across all cars.
Next, imagine each traffic light as an arrow
rotating continuously around a circle (Fig. 1). The
light is red when the arrow is in the red half of the
circle, and green when it is in the green half. The
angle of the arrow is its phase, and we let 0 to 7
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Figure 1.
L

Visual cepresentation of a two-way
street. A car moves at velocity Vv
between two traffic lights in time
Tc. Teaffic lights are depicted as
cotating arccows with angularc veloc-
ity w, and complete one full cycle
in time Tu. The phase of each traffic
light is delayed from the previous

one by a time Td.

Table 1.

Key variables used in the theoretical

model and simulation.

Variable | Definition

Speed of a car in motion

Average car speed, or V X (Time Moving) /(Total Time)
The number of lights a car has passed

Angular frequency of each traffic light

Time for a traffic light to complete one full cycle

Time for a car to travel between two lights

Delay time between lights

T1/Tc

Tyq/T,

r/(1—r1g)

At ficst, it appeacrs that the overall system is
best secved by giving one dicection a pecrfect
geeen wave and forgetting about the other side.
But [..] we actually do better by saccificing

some of the efficiency in one direction for

improved conditions in the rceverse dicection.

radians denote green and 1T to 21T radians denote
red. The time it takes for each arrow to complete
full cycle is the period, Tt, which implies an
angular frequency w (Table 1).

The interesting part of the problem comes
from modifying the initial phases of the lights. Let
Tc be the time it takes for a car to travel between
two lights, and Td be the time delay between the
phases of two adjacent lights. If the Td for every
pair of lights is equal to Tc, then we achieve a
“green wave”: a driver never sees more than one
red light, and his takeout food is still warm when
he gets home. This is optimal. However, suppose
Ta were larger than Tc by the constant value T/ 2.
Now, our driver hits every red light on the road and
has to wait the entire half-cycle before moving
again. This suboptimal “red wave” leaves him

nothing but frustration and cold, mushy takeout.
Therefore, holding T4 constant between

all the lights allows us to span the best and worst

case scenarios. If we taker =Tt/ Tcand 1d = Ta /

Tc, then the entire system is described with two
parameters. Since Td < Tt by definition, it follows
that 0 < ra <r. Also, we tend to assume r > 1. Note
that for cars going the reverse direction, the phase
difference between consecutive lights is the
opposite of what the forward direction experienc-
es. Thus, their effective rd becomes r — ra. This
means that it is generally impossible to set up a
green wave in both directions, so maximizing
efficiency for the whole street is a messy affair.
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Pecoducing a chimera state in a ring
of traffic lights is teicky, but
could potentially lead to significant
improvements in efficiency for cacs
travelling in both dicections.

E Figuce 2.
-y

| Travel efficiency versus rda at two fixed values of r.
o 1001 values of ra wece sampled on each plot. The ced
t‘i and green cucves show the efficiency of cars moving
Ll to the cight and left, cespectively. The black cucve
“ is the average of the green and rced cucves.
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Mathematical Modeling

We start by trying to predict how the average
speed of a car varies with rq, for a fixed r.
Constraining the value of r lets us limit the range
of rd, as noted before. Let us begin by considering
just one car. The average speed of the car is
defined as the distance traveled over time, or in
other words,

_ V x(Time Moving)

@9 T (Total Time) (Ea- 1)

We want to rewrite Eq. 1 in terms of the param-
eters of our model. It is clear that the Time Moving
is simply equal to the travel time between lights
(Tc) times the number of lights passed, henceforth
known as Nur. Now, let us find the Total Time — the
sum of the time moving and the time spent at a
red light. When the car reaches the Nur th light, it's
journey will end if the light is red; that is, if the
phase of this light mod 21T is between T and 21
radians. If we take Z to be some integer, and A® to
be the phase difference between consecutive
lights, then the inequality

(2Z -1)m < A¢ X Nyr + w x (Time Moving) < 2nZ (Eq.2)

must be satisfied for the car to stop. Because we
are looking for the furthest that the car can travel
under our constraints, we must find the most
restrictive (i.e. smallest) integer value for Nir. By
letting M =1/ (1 — ra), we have that

_ oo (Npry Ny 1
Z= cellmg( m ) = ﬂoor( M + 2) (Eq.3)

must hold as well.

It is possible to solve Eq. 3 for NiT in terms of M.
After doing so, we find that the Total Time is equal
to Z x Tt + Nur x Ta. This allows us to rewrite the
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average velocity function in terms of r and rq,
giving us

V X Nyr

r X ceiling (%) +14 X N

Vaug = (Eq-4')

We can normalize this expression into an efficiency
value, because we know the maximum and
minimum possible speeds. Vavg cannot be greater
than V, the average speed during a green wave.
Likewise, it cannot be less than the red-wave
speed, which is given by (V x Tc) / (Tc + Tt / 2).

Figs. 2a and 2b plot efficiency versus rd for forward
and reverse traffic, as predicted by this model, for
two different values of r. The curve for cars going
in the forward direction is the horizontal mirror of
the curve for the reverse direction. Let us recall the
discussion of red and green waves. We would
predict that the velocity of the leftwards car is
maximized at rd = 1 and minimized atra =1/2 + 1,
and that the velocity of the rightwards car is
maximized at ra = r — 1 and minimized at ra = 1/2 - 1.
Both plots reflect this prediction. An unexpected
feature is the second maximum, which occurs just
beyond the red wave minimum. Here, each light
turns red just after the car travels through it — a
careful distinction that is, as one might imagine,
highly sensitive to perturbations. Examining the
average curve, we realize something curious. At
first, it appears that the overall system is best
served by giving one direction a perfect green
wave and forgetting about the other side. But in
2a, we actually do better by sacrificing some of the
efficiency in one direction for improved conditions
in the reverse direction. This compromising
behavior is worth noting, and should be investi-
gated upon future work.
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I Cceating a Simulation

To confirm these theoretical results with simula-
tions, adaptive time steps are needed to accurately
record the time spent waiting at a red light or
travelling between lights. We begin by simulating
the “bosonic” case, where the cars do not interact
with one another. With some slight modifications,
we can extend this simulation to the more realistic
“fermionic” situation, in which the cars cannot
pass through one another.

Bosonic

Since the cars in the bosonic model have no
interaction with one another, it suffices to simulate
just one car on a ring of 500 lights for 5000 arbi-
trary time units. A plot of the simulation efficiency
versus the model-predicted efficiency is shown in
Fig. 3. The bosonic simulation aligns almost
perfectly with the model.

Fermionic

As it turns out, two cars in the real world usually
cannot occupy the same place at the same time.
How can we tell if our predictions are still valid for
cars with non-zero densities? Addressing this
question requires a proper simulation of the
situation, in which cars cannot pass one other. We
expect that as more cars are added to the system,
the average velocity will monotonically decrease.
Moreover, we expect that cars will start piling up
behind red lights, resulting in an additional time
delay in reaching the next light. If the first car in
the line barely makes it through a green light, all of
the following cars will not. This should result in a
smoothing of discontinuities in the efficiency graph,
especially in the peak right before the red wave.

Figurce 3.

The plots of fermionic simulation efficiency versus
model-predicted efficiency in Figs. 4a and 4b
confirm these predictions. 1250 and 6500 cars were
simulated on a ring of 500 lights that could support
a maximum of 12500 cars. The large number of
cars means that multiple parts of the system are
being sampled at once; thus, the simulation only
needed to be run for 450 arbitrary time units (as
opposed to 5000 previously) for convergent
behavior to be observed.

Because making a full efficiency versus ra
graph can be taxing at high densities, it is more
efficient to hold rd constant and vary the number of
cars in the system. Fig. 5 shows the effects of
increasing the number of cars for a fixed r and rd on
the average car speed. Even for a frustratingly high
traffic density, Fig. ba shows that there is little lost
in the way of speed until a critical transition point.
The critical point arises when so many cars have
backed up behind a red light that it takes multiple
cycles of the light before a car can pass. This is
called a “jamming transition”. No complete theory
currently exists for the locations of the critical
point given a value of ra. Part of the problem is
that, as mentioned before, certain rd values
produce ideal results that are highly sensitive to
perturbations. So even though velocity graphs
made with these values do contain a transition, the
curve is rounded off as seen in Fig. bb. This makes
it difficult to determine the true critical point.
Sometimes, as in Fig. bc, this decay causes a
secondary transition that makes critical point
detection even harder. All the transitions that are
clean enough to estimate a critical point are
plotted in Fig. 6.

Simulated efficiency data (ced) supecimposed on the
analytic efficiency cucve (blue) for Bosonic traf-
fic in one dicection. Cars wece simulated on a loop
of 500 lights for 5000 acbitracy time units. 1001
equally spaced values of ra wece taken at r = 7.5, Tc
= 1. Feustration rcefers to a boundary effect which

has little effect on the overall pecformance.
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Figurce 4.

Simulated efficiency data [red) supecimposed on the
analytic efficiency cucve (blue) for fecmionic traf-
fic in one dicection. The simulated rcoad was a ring
of 500 lights with coom for 12500 cars. 1250 cars
were simulated in 4a, and 6500 cars were simulated in
4b. In both simulations, 101 values of rd are simu-
lated at r = 7.5 and Tc = 2 for 450 time units.

Figure 5.

Figuce 5 a, b, c. The value of ra is held constant at
theee diffecent values. Plots show the average car
velocity versus number of cars. Simulations wece cun
in a system with a maximum capacity of 12500 cacrs,
with r = 7.5 and Tc = 2. 76 simulations were each cun

for 500 acbitrarcy time units.
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I Future work

The results presented cover only a fraction of
possible questions. But the model is fully set up to
address many different optimization problems.

In the real world, cars travel at different speeds.
How does randomness affect the efficiency of the
cars? Since the simulated traffic is moving around
a ring, all the cars would likely bunch up behind
the slowest moving car. These results would be
uninteresting and uninformative. More meaningful
results can be obtained if the cars re-randomize
their velocities periodically throughout the
simulation. However, we predict that this random-
ization will not drastically alter the shape of the
efficiency graph.

A more exotic possibility is to change the funda-
mental behavior of the lights, which is the long-
term goal of this research. Under the new schema,
each light would be coupled to every other light in
the following manner. For a system with N lights,
we define a coupling strength K and a phase delay a.

Figuce 6.

Figure 6. Estimated critical densities at various
values of ra. These values wece inferred from plots

similac to the one in Fig. ba.
Density at Critical Point versusr

14 L 4
09
08+ *

= 07 + *e *
Fos ¢
a5 - .
]
£ 04 +
5]

03 ¢

0.2 1

01 1

0 1

If light i has phase ® i and natural frequency w i,
then its behavior is described by

N
do; KN
E:wi+N;sm(¢j—¢i+a). (Eq.5)

If the lights all have the same w and start at
random phases, a Kuramoto model predicts that
the lights will eventually attain identical phases for
any nonzero K — a drab result.i1] If the coupling
decays with distance, however, the results are
intriguing. With the right initial conditions, then
we may arrive at a “chimera state”, in which the
lights are divided into two categories: coherent
oscillators (which move together) and incoherent
oscillators (which move in a randomized fashion).(2]
Producing a chimera state in a ring of traffic lights
is tricky, but could potentially lead to significant
improvements in efficiency for cars travelling in
both directions.
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